Introduction for the objective evaluation in practice of human anatomy (flag based examination)

Wakoto MATSUDA 1), Osamu YASUHARA 3), Yoshinari AIMI 2), Kousuke TAKI 2) Satoru HONMA 2), Takahiro SONOMURA 4), and Motoi KUDO 2)

1) Division of Anatomy and Cell Biology, Shiga University of Medical Science
2) Division of Neuroanatomy, Shiga University of Medical Science
3) School of Human Nursing, The University of Shiga Prefecture
4) Department of Anatomy for Oral Sciences, Graduate School of Medical and Dental Sciences, Advanced Therapeutic Course, Field of Neurology, Kagoshima University

Abstract

Objective method of evaluation in human anatomy is an important issue in all medical schools. In Shiga University of Medical Science, objective examinations (flag-based examination) in practice of human anatomy have been conducted instead of oral examinations (viva voce) since 2008. In this method, medical students are divided into two groups. The one group takes flag-based examination in the anatomical laboratory and the other takes written examination in lecture room. After finishing each examination, they exchange the rooms. In this technical note, we introduce the concrete method to conduct the flag-based examination and discuss its advantage and disadvantage of this new objective method of evaluation.

Keyword flag-based examination, oral examination, practice in human anatomy, objective method of evaluation

Received January 13, 2011
Correspondence: matsuda2@belle.shiga-med.ac.jp
新評価法の目標

新評価法は以下の6つの目標のもとに実施される。

1. 受験者全員が同じ条件（同一の時間と問題、同一採点基準）で公正に試験を受ける。
2. 必要最小限の試験実施時間で最大限にして十分量の課題を取り組ませる。
3. 結果を受験者に早期にフィードバックする。
4. 問題の難易度、適切性を問題毎に客観的に評価し、出題者にフィードバックする。
5. 少人数の教員でも実施できる形式とする。
6. 自班だけでなく他班の有様を積極的に観察する様に学生に動機づける。

新評価法の概要

試験を受験する学生を半分に分け、一方のグループが解答実習室（図1）のご遺体を対象としてフラッグ型試験を受験し（これを「フラッグ開門」とする）、もう一方のグループが隠蔽実習室（図1）にて知識を問う筆記試験を受験する（これを「筆答開門」とする）。それぞれの開門を終了後、各グループの接触を避けながら試験室を移動することによって、最終的に全員が両方の開門を受験する。このような仕組みによって、待ち時間の解消のために十分な余裕をもたせた試験会場を確保し、実習で得た知識・技能をより多角的に評価することを意図している。

本稿では便宜上、受験する学生数を100名、実習班は5名1組で25班と想定する。あらかじめ、同じ実習班の中では学生に1番から4番までの「試問番号」を与えて実習実施のための記入を用意しておく。試験実施会場とし

て3つの教室（講義室、解答学習室、顕微鏡実習室）を用意する。必要な物品は次項（準備物）に示す通りである。なお、1回の試験実施に最低限必要な教員数は3名であるが、ここでは計4名の教員が各開門を2名ずつ担当するものである。フラッグ開門のテープル数はご遺体（=班）の数に相当する25台に加えて、音楽座標のテープル5台を加えた30台とする。集合から解散・後片付けまでには所用時間は約3時間（90分授業2コマ分）である。

事前準備として、4名の教員は一人につき7〜8台ずつ出題を担当するテーブルを決めておく。担当するテーブルの割当状況を実習中同志識確認しながら、1テーブル2間として14～16間のフラッグ問題および同数の筆答問題を作成しておく。試験直前の実習終了時以降は会場となる2つの教室（解答学実習室、顕微鏡実習室）への学生の入室を禁止する。試験日の前日（午後実施の場合）は当日午前中）には各々が作成した問題に基づいてフラッグ（写真1）を担当する班のご遺体に設置し、問題用紙を実習テープルの所定の位置に貼付すること（図2の問題位置）。セットアップにかかる時間は通常2〜3時間程度である。

試験当日、学生はまず講義室で集合し、持ち物（筆記具、時計・薬品）による自己の役所を設置し、キャップ・マスクを任意の確認と簡単なガイダンスを受けられる。指示された以外の持ち物は全て講義室に残し、試験番号に従って2つのグループに分かれ、各々の2つの開門（フラッグ開門・筆答開門）で試験を受験する。「フラッグ開門」（解答実習室；図1.2）では、ご遺体・音楽座標に立てたマーキング（フラッグ）を観察してテープルに貼付された問題に答える。「筆答開門」（顕微鏡実習室；図1）では、実習書2)教科書3)の指定範囲の筆記試験を行なう。

図1 フラッグ開門（解答実習室）および筆答開門（顕微鏡実習室）の配置図。

各開門終了後は、お互いのグループが接触しないように配慮しながら教室を移動し、残りの開門を受験する。両開門とも学生は問題を持ち帰ることはできないが、両開門の終了後に設けられるレピュタイム問題解答用紙で問題と正解を確認することができる。また、質問のある時にはレピュタイム中か、所定の時刻までに質問
することができる。出題教員は質問の内容を踏まえて問題の適切性を判断し、必要に応じて問題を削除（あるいは全員に加点）したり、後日実習中に全員に対して解説講義を行なったりすることで質問の結果を全員で共有する。

写真1 フラッグ関門のマーキングの例。

フラッグ関門の問題例

フラッグ関門における問題例と正解を以下に示す。

Table VI

問11 Aは神経である。
問12 Bは神経である。

a.正中 b.尺骨 c.筋皮 d.腋窩 e.橈骨
f.肩甲上 g.肩甲下 h.長胸 i.胸背 j.正解なし

【正解】問11 a 問12 c

Table IV

問7 Aは脊髄の先端である。Aの名称は□である。
a.頚髄大 b.腰髄大 c.尾髄 d.脊髄円錐 e.尾尾

問8 Aは第□腰椎と第□腰椎の間の位置する。
（正解は2つ）
a.1 b.2 c.3 d.4 e.5

【正解】問7 d 問12 a,b

Table XXVI

問51 Aが通っている孔は何か。
a.椎孔 b.椎間孔 c.横突孔 d.大後頸孔 e.正解なし

問52 ここを通る構造物は、□arteryである。
a.common carotid b. internal carotid
c. external carotid d. vertebral
a. inferior thyroid

【正解】問51 c 問52 d
準備物

- クリップボード
- ストップウオッチ 2 個
- フラッグ各種（写真 1）計 30 本程度
- シャーカスペン（問題に X 線写真を用いる場合）
- 骨学標本
- 骨格標本
- 実習テープル＋ご遊体 25 台
- 実習テープル＋骨標本 5 台
- タイムキープ用チャイム CD 1 枚
- ラジカセ
- フラッグ関門の問題用紙 各 2 枚／枚×30 テーブル＝30 部
- フラッグ関門の解答用紙 100 部＋予備
- フラッグ関門のメモ用紙 100 部＋予備
- フラッグ関門の正解（掲示用）各 2 枚／枚×30 テーブル＝30 部
- 筆答関門の問題用紙 100 部＋予備
- 筆答関門の解答用紙 100 部＋予備
- 筆答関門の正解（掲示用）2 部

（問題用紙・解答用紙は各々 50 部ずつに分けて準備しておく）

実施方法

時系列に沿って新評価法の詳細を述べる。

《試問 1 週間前～前日》

（1）第 1 回目の試問の 1 週間前の実習中に 20 分程度のガイダンスを行なう。この時フラップ関門の移動順路（図 2）も示してリハーサルを行なう。

（2）出題担当教員は試問前日までに所定の問題を作成し、フラップ問題はプリントアウトしておく。筆答問題は試問当番（=その回の試問総括者）が集めて必要部数（100 部＋予備 5 部）を解答用紙（マークシート用紙 100 部＋5 部を 2 個）とともに準備しておく。

（3）試問開始前までに両関門のセットアップを済ませておく。

《試問当日》

集合：講義室（所要時間 5～10 分）

（4）指定した講義室に集合し、全体的なガイダンスを行なう。

（5）試問番号にしたがって学生を 2 つのグループに分け、両関門に移動させる。まず、前半にフラップ関門を受験する学生のグループ（例えば試問番号 1, 2 番の 50 名。以下同様）が解答実習室（図 1）に移動し、完了してからもう一方のグループ（試問番号 3, 4 番の 50 名）が顕微鏡実習室（図 1）に移動する。

フラップ関門：解答実習室（所要時間 65～70 分）

（6）実習室入口で受験者にクリップボード・解答用紙・メモ用紙を配布し、パインドさせる。解答用紙に氏名・日付・試問名・出席番号等を記入させる。

（8）半数（試問番号 1 番の 25 名）が自分の班の実習台の問題位置に立ち（=解答者）、残りの半数（試問番号 2 番の 25 名）は実習台を挟んで反対にある待機位置の椅子に着席する（=待機者）（図 2）。

（9）タイムキープ用 CD を再生し、1 分毎にチャイムを鳴らす。解答者は 1 分間で 2 問のフラップ問題（フラップ関門の問題例および補足事項 1 を参照）を解答する。解答者は実習台を回り込んでフラップを観察してもよい。解答者・待機者共に解答を記入する時以外は「ニュートラル姿勢」（補足事項 3 を参照）をとる。

図 2 フラップ関門における受験者の移動順路。枠内の番号はテーブル（1-25 は班）番号を表す。
（教：教卓、問：問題位置、待：待機位置）
（10）1分毎に鳴るチャイムを合図に待機者は問題位置に進み、解答者となってフラッグを観察する。解答者は次のテーブルの待機位置に進む。待機位置では全日記入・修正を行ってよい。
（11）以上を繰り返して、全30テーブルを計60分で巡回する。ただし、最初に待機者としてスタートした学生（試験番号2番の25名）は、最後に解答した問題の手直しをする時間を与えるため1分余分に必要である。したがって、フラッグ閲覧の所要時間は61分となる。
（12）終了したら直ちに解答用紙を回収し、次の閲覧に移動するまでその場で待機させる。

試験室のチェンジ（所要時間5分）
（13）前半の閲覧が終了したら、各々の閲覧の学生が接触しないように試験室を交換する。
（14）予定通りスケジュールが進行した場合、筆答閲覧の方が15分早く終了する。このため、前半に筆答閲覧を受験した学生（試験番号の3番の50名）は10分程度のトイレ休憩時間をとる。この後に一時待機場所（滋賀医科大学の場合、両閲覧の窓にある望遠室前の廊下）に移動する。
（15）前半にフラッグ閲覧を受験した学生（試験番号1番の2番の50名）は、フラッグ閲覧終了後直ちにdoor to doorで筆答閲覧（顕微鏡実習室；図1）に移動する。完了したら、一時待機中の学生がフラッグ閲覧（解剖実習室；図1）に移動する。

筆答閲覧：顕微鏡実習室（所要時間60〜65分）
（16）試験室のチェンジが完了したら、後半に筆答閲覧を受験する学生は10分程度のトイレ休憩時間をとる。
（17）試験再開後、問題用紙と解答用紙を配布し、問題用紙に氏名・日付・試験名・出席番号等を記入させる。
（18）次項に述べる通り（補足事項1）、フラッグ閲覧と同一の出題者による出題内容の重複を避けて作成された多肢選択式問題60題を制限時間45分で解答させる。
（19）終了したら問題用紙と解答用紙は持ち帰らずに回収する。
（20）試験監督の合図でレビュータイムの開始予定時刻（終了の概ね20分後）を決めて学生にアナウンスし、一旦解散する。

レビュータイム：解剖実習室（所要時間20〜30分）
（21）開始時刻までにフラッグ問題の正解は各実習テーブルの問題に赤字で記入する。筆答閲覧の問題は所定の位置（黒板など）に貼付する。必要なら試験終了後のフラッグ撮影を済ませる。
（22）レビュータイムの開始時刻になったら解剖実習室を開放する。
（23）学生は入室したら、一旦自分の席のテーブルに集まり、説明を聞いた後自由に正解を確認する。問題についての討議や質問は自由である。ただし、教員はこの間での質問は所定の用紙の提出により受理するだけとし、出題者にフィードバックする。質問票を受けた出題者は回答を作成し、後日掲示する。また、問題を削除（全員加点）するかどうか判断し、必要に応じて後日の実習中に解説講義を行なって情報を受験者全員で共有させる。

各閲覧の後片付け（所要時間10分）
（24）最も注意すべき点は、フラッグ閲覧で使用したフラッグ、特にマチ針のついたものを決してご遺体内に残さないように徹底することである。

補足事項
ここでは新評価法の中で本講座において特に工夫している点について4点補足しておきたい。

1. 出題形式・採点基準
出題形式は両閲覧とも多肢選択式である。フラッグ閲覧の問題数／試験時間は50題／60分、筆答閲覧では60題／45分である。これを教員が手分けして問題を作成する。例えば、出題担当教員が5人であれば、両閲覧とも一人が12問を作成する。この時、両閲覧の問題の重複を避けるため、試験範囲全体を出題担当教員数の領域に区分する。各出題領域は同じ教員が担当する。また、問題作成後には教員相互に問題を回覧することによって総合的な知識を見つける問題が重複することが無いようにも配慮している。前項（実施方法9を参照）で述べた通り、フラッグ閲覧では、1テーブルに2題の問題が貼ってあるが、2つ目の問題は関連させるか、全く別ことを問うかは出題者に任されている（フラッグ閲覧の問題例を参照）。また、問題の難易度は大まかに1/4を易問、1/2を標準、1/4をやや難問として作成し、難易度については当該年度の全問題集に記載される正解率・識別指数などの指数と問題の重要さを考
フラッグ問題においてはご遺体に設置したフラッグが問題構成の上で重要であることは当然である。本講座では試問の前後にフラッグをデジタルカメラで写真撮影して記録を残している。この記録は、次のようなことに役立てている。第一に、試問前後に撮影することので、試問途中にフラッグが外れていたという可能性を否定できる（このようなケースは実際にこれまで経験されていないが）。第二に、撮影した写真は問題・正解・正解率・識別指数と共に当該年度の全問題集としてブールできる。この問題集は試問終了後の実習中に行なわれる解説講義の教材となる。第三に、この問題集は翌年度の解剖学の講義に使用することができる。例えば不適切問題を排し、正解率の悪かった重要問題などを講義で強調することで、年度を追う毎により明確な学習目標を学生に提示し得る。

なお、写真撮影に要する時間は30テーブルで15〜20分程度である。また、全問題集は、問題作成時点であらかじめフォーマットを決めて集めておけば、試問番号の教員が正解率・識別指数・写真などをはめ込む作業時間は1時間程度である。

フラッグ問題においては未体に設置したフラッグが問題構成の上で重要であることは当然である。本講座では試問の前後にフラッグをデジタルカメラで写真撮影して記録を残している。この記録は、次のようしたことにより役立てている。第一に、試問前後に撮影することで、試問途中にフラッグが外れていたという可能性を否定できる（このようなケースは実際にこれまで経験されていないが）。第二に、撮影した写真は問題・正解・正解率・識別指数と共に当該年度の全問題集としてブールできる。この問題集は試問終了後の実習中に行なわれる解説講義の教材となる。第三に、この問題集は翌年度の解剖学の講義に使用することができる。例えば不適切問題を排除し、正解率の悪かった重要問題などを講義で強調することで、年度を追う毎により明確な学習目標を学生に提示し得る。

なお、写真撮影に要する時間は30テーブルで15〜20分程度である。また、全問題集は、問題作成時点であらかじめフォーマットを決めて集めておけば、試問番号の教員が正解率・識別指数・写真などをはめ込む作業時間は1時間程度である。

フラッグ問題においては未体に設置したフラッグが問題構成の上で重要であることは当然である。本講座では試問の前後にフラッグをデジタルカメラで写真撮影して記録を残している。この記録は、次のようしたことにより役立てている。第一に、試問前後に撮影することで、試問途中にフラッグが外れていたという可能性を否定できる（このようなケースは実際にこれまで経験されていないが）。第二に、撮影した写真は問題・正解・正解率・識別指数と共に当該年度の全問題集としてブールできる。この問題集は試問終了後の実習中に行なわれる解説講義の教材となる。第三に、この問題集は翌年度の解剖学の講義に使用することができる。例えば不適切問題を排除し、正解率の悪かった重要問題などを講義で強調することで、年度を追う毎により明確な学習目標を学生に提示し得る。

なお、写真撮影に要する時間は30テーブルで15〜20分程度である。また、全問題集は、問題作成時点であらかじめフォーマットを決めて集めておけば、試問番号の教員が正解率・識別指数・写真などをはめ込む作業時間は1時間程度である。
考察：口頭試問と新評価法の比較

新評価法は細かなルールが多く、一見すると口頭試問と比較して負担が増えてしまう様な印象があるかも知れない。しかし、これらのルールはシンプルかつ公正に試問を実施するためのものであり、1～2回実施して学生・教員とも慣れてくると簡潔で公正な評価法であることが判明して来た。

本法の導入によって、試問を短時間で実施することにより、貴重な実習時間を増加させることが出来る。平成19年度までは口頭試問は3コマ×6回=18コマ（＝27時間。実際にには試問などでそれ以上）を要していたが、現在は2コマ×3回=6コマ（＝9時間）で完了している。すなわち、試問時間は3分の1に短縮できた。見方に変えれば同じ総実習時間を（滋賀医科大学の場合150時間）で実習時間を18時間余分に確保できたことになる。さらに受験者の立場から考えると、口頭試問で実際に一人の学生に費やされる時間は、一人1回の試問あたり10分として6回の試問で計1時間程度であったと考えられるが、新評価法では1回の試問で正味2時間全てが解答と解説に費やされるため、3回の試問で計6時間（6倍の時間）は問題解決に取り組んでいることになる。したがって、単純計算でも新評価法による学習効果の密度は3×6=18倍ということになる。

図3 試問方法の妥当性。
（試問方法が適切であるとの評価（9点満点）の平均値。左：口頭試問（2007年度）、右：フラッグ型試問（2008年度）*P<0.01（Mann-Whitney’s U test: P=0.0040））

新評価法のもう一つの利点として、評価基準が統一されているため合否判定や成績評価における不平等感が大幅に減少したことが挙げられる。本講座では新評価法の導入前後で学生にアンケート調査を行った。その結果、本法は試間方法の公正性と効率性において優れているとの評価を得た（図3）。[1,5]

やや良い面ばかりを強調し過ぎたきらいがあるが、実施の細かな点については異論もあると思われる。本講座での実施方法も、教師間の計画、アンケートなどを通じて取得した学生の意見、質問などを踏まえてこれまでに幾度も改善を重ねて来た。言うまでもないが、本稿で示した新評価法は本講座における実施の一例であり、実際の運用にあたっては各大学の実情に合わせたアレンジが必要となるであろう。

今後の課題としては、滋賀医科大学 e-Learningシステムの応用を検討している。具体的には、筆頭関門（顕微鏡実習室）においてマークシート方式からコンビュータ端末を利用したCBT型解答形式への変更や、フラッグ関門（解剖実習室）におけるiPadの利用を考えている。

最後に
実習実施の形式として口頭型とフラッグ型のどちらが良いかについては一長一短であり、簡単に結論の出る問題ではない。しかし、学生の立場に立つと、近年においては奨学金の獲得や臨床研修病院のマッチングなど、在学中の成績評価内容を公式に問われる機会が増えてきている。したがって、解剖実習試問に限らず、教員の主観が入り込むよい評価方法は今後何らかの改善が求められる可能性が高く著者らは考えている。本稿が、新評価法の導入を検討されている大学医学部、歯学部の解剖教室で、さらなる改善を経てより公正で合理的な評価法が実施される一助となれば幸いである。

なお、滋賀医科大学解剖学講座ではフラッグ型試問導入のためのより詳細な実施マニュアルを含むパッケージを用意している。導入にあたってご参考にされている方は著者にご一報頂ければ幸いである。

文献
[1] Personal communication
[4] 松田和郎，細公介，相見良成，安原治，工藤基．合理的な解剖実習と公正な評価法を目指して．解剖誌．85：suppl. 117，2010

26